
Angular momentum in electrodynamics and an argument against the existence of magnetic

monopoles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 L449

(http://iopscience.iop.org/0305-4470/26/9/003)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math Gen. 26 (1993) L449-L455. Printed in the UK 

LETTER TO THE EDITOR 

Angular momentum in electrodynamics and an argument 
against the existence of magnetic monopoles 

Andrzej Herdegen 
Institute of Physics, Jagellonian University, Reymonta 4, 30-059 W 6 w ,  Poland 

Received 3 F e w  1992 

Abstract The definition of angular momenhlm (AMI in electrodynamics is re-examined, so as 
to wvet charged and infra& fields as well. The total AM is identified as that outgoing in fhe 
future or incoming from the past causal directions respectively. For these representations to be 
equivalent. a certain condition must be satisfied; it is fulfilled in the usual field-theory wntext 
but excludes magnetic monopoles. In the presence of charges, the total AM cannot be mmpletely 
separated in remote past or fuhlre into free matter and liee elecmmagnetic field parts. which 
should have consequences in quantum theory. 

One of the main problems of quantum electrodynamics, which has not so far found 
satisfactory clarification, is the description of charged states (for a review, see [I]). On 
the calculational level, if the usual rules of the conventional quantum field theory are 
applied, it manifests itself by producing infrared divergencies. The procedures used for 
obtaining finite results of calculations do not tell us much about the real underlying 
physical situation. Analysing the QFT scheme more critically one realises that the usual 
Fourier representation of the angular momentum (AM) becomes meaningless even for the 
classical free electromagnetic field with non-vanishing infrared part, e.g. the radiation field 
produced by a charged particle which changes its asymptotic velocity. (This is directly 
related to non-absolute integrability of the AM density of the Coulomb field over any space- 
like hyperplane-see e.g. [2] and below.) The canonical quantization which presumes 
such a generator of the Lorentz transformations must lead to difficulties. In the rigourous 
algebraic approach to the quantum electrodynamics it is claimed that the Lorentz symmetry 
must be broken [I]. We do not regard this result as conclusive. The Poincar.5 symmeny 
seems to constitute a better justified demand then some of the assumptions inherent in this 
approach. One of them is, in effect, a classical treatment of the space-like asymptotics of 
electromagnetic fields (hence also of charges). We think that a consistent theory demands 
also the Coulomb field to be quantized. That such a line of approach can be contemplated 
is implied by the results of Staruszkiewicz [3]. 

In the present letter we indicate that in classical electrodynamics there exists an 
unambiguous extension of AM to the typical situation met in field theory, where massive 
charged particles are scattered from initial to final free asymptotic states. The consistency 
condition for this extension is the absence of magnetic charges; this constitutes our argument 
against their existence. More detailed exposition together with an attempt at quantization 
taking into account the results presented here will be published elsewhere. 

The main procedure to be used is the asymptotic expansion of fields in null infinity 
(without, however, Penrose’s conformal compactification of spacetime, as applied in similar 
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context by Ashtekar [4]). The technical devices to be employed are the spinor calculus (in 
the abstract index notation) and the spin-coefficient formalkm (for a complete exposition 
see [5]).  To introduce them, let tu be a timelike vector, xu a point in Minkowski space 
and In = oAoX (n" = iA iA ' )  a null future-pointing vector field orthogonal to the future 
(past) light-cones originating on the to-time-axis. oA and form a normalized spinor 
basis, oAiA = 1; we assume that it is constant along the generators of the cones. Then 
tu = t .n,  l' + t.1, no, x' = s', 1" +s, n" (s and s', scaled properly, are the retarded and the 
advanced time of xa, respectively). The only non-vanishing weighted spin-coefficients in 
the formalism based on oA and i A  are p = -t.l/r and p' = t .n/r ,  where r is the radius of 
2-spheres along which the retarded and advanced light cones intersect. The quantities p, s, 
oA, oA' (or alternatively p', s', t A ,  iA ' )  can be used as coordinates. Any weighted quantity 
of [ p .  9)-type is then a homogeneous function with the scaling law 

f (Axp, AIS, AO, 15) = A p i q  f (p,s, o,@.  

The weighted operators of the compacted spin-coefficient formalism are then simply 
expressed by 

Let F ,  in particular, be a (0,Ol-field with the future null infinity asymptotics F (p. s, 0,6)  = 
(-P)@ (s, 0,  5)  + 0 (p2) for p + 0. 4 is then a homogeneous function of its variables 
with the scaling law 

Q, (Ah, Ao, x5) = (Ax)-'Q, (s, 0,;) 

Now the important thing is that this homogeneity property guarantees the time-axis 
independence of @ and a simple transformation law with the change of the origin in 
Minkowski space. Namely, if ?" is the new timeaxis verso1 &d x" = a', i' + F, 2 = s', 
I' + s, n" +a", and 6 is the new asymptotic, then 

We apply now this asymptotic expansion to the case of electrodynamics. Let the 
antisymmetric field Fob satisfy the generalized Maxwell equations with a possible magnetic 
current admitted 

0, Fah = 471 .l: Vz Fob = -471 J& . (1) 
Both the electric and the magnetic currents are assumed to be carried by massive matter. 
Outside the sources the free Maxwell equations are satisfied, which in the compacted spin- 
coefficient formalism can be written in the form 
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where r p a ~  is the unique symmetric spinor representing the tensor Fab by Fob = VAB E A ~ B ,  + 
@ASBP EAB. In all cases of physical interest one can assume the future null infinity asymptotic 
expansion (cf [4] and [6]): 

2 12) 
V A B  = (-PI q.2 + P vAB + o ( p 3 ) .  

From the theory of weighted spherical harmonics [SI it follows that there exists’ a unique 
spinor <A (s, o, 0) such that oA& = -p-’8cB = iA‘acB/aoA’. Setting this into the 
equations one finds that 

V A B  = (-P) O A ~ B  ( S , G  6) + o (2) 

o a r A  = Q = Pel - iQm, 

(2) 

and 

(3) 

where the dot denotes differentiation with respect to s and Q,, and Qmg are the electric 
and the magnetic charge, respectively. CB is a homogeneous function with the scaling law 

CB (his,  ho, 10) = A-‘<B (s, 0,;). (4) 

In addition to V A B  another field needed for the evaluation of angular momentum is 
V A B X ~ ,  = s’rpaso’o~, + S ~ A B [ ~ L ~ ,  . Using the identity s’p +sp’ = -1 , the definition of 
CA, the differential identity (following from homogeneity) iB + oA’a,&/aoA‘ = 0 and the 
asymptotic form of V ) A B  one can show that 

The last equality in (5) is a consequence of (3); it defines the spinor ~ w A r  . We observe that 
the leading asymptotic terms of pAB and ( O ~ B  x i ,  are expressed by a single homogeneous 
spinor function. Conversely, if these fields have the assumed asymptotic form, then this 
form uniquely determines the spinor {A (this again follows from the theory of weighted 
spherical harmonics). 

We assume now further that similar asymptotic expansions exist ‘in the past null 
infinity.. The coordinate system appropriate for this region is (p’,  s’, I ” ,  iA’)  and the 
asymptotic formulae are obtained from (2H5) by substituting,(p’,s’, L ~ ,  L~‘) , and U;, 

Finally, we restrict the class of admisible currents: the radiation field produced by them 
(the retarded minus the advanced field) should belong to the class of fields of the assumed 
type. Among the currents thus admitted are those canied by massive charged particles or 
massive charged fields (e.g. Klein-Gordon or Dirac fields) evolving freely for past and 
future asymptotic times. 

for ( - p , s , ~ o  A , o  A‘ ) , CB~and W A ,  respectively. 
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The following question remains to be answered what are the conditions for <E and 
<A (subject to (3) and (4)) to represent the actual asymptotics of some existing field with 
the currents in the assumed class. We shall not analyse this question here in detail but 
only state the results. The following demands comprise a necessary condition: there exist 
limits of <B (s, o, 5) and <; (s', L, i) for s and s' tending to plus and minus infinity and 
<; (+CO, L ,  i )  = ( E  (-CO, r.9. The addition of some further conditions on the rates at 
which all those limits are attained bansforms the condition into a sufficient one. The 
rate estimates which can hardly be weakened and which are assumed consequently are 
the following: i~ (s, o, 6) together with its 1. and 2. spinor derivatives is 0 (a-'-") 
for Is1 + CO and similarly for i;. Moreover, in the case of vanishing sources one 
has <E (s, 0 . 5 )  + <; (s, o , 6 )  = <S(-CO,O, 6) = CL (+w, o,Q (hence ( B  (+CO, 0,6) = 
<A (-CO, U ,  (5) = 0); cf [6]. 

The fields r p ~ ~  and qAB xf ,  thus determined have definite asymptotic limits in space-like 
directions as well. For r + CO, the fields in any hyperplane orthogonal to the time-axis are 
of order 

~ A E  = o (r-')  AB x i r  = o (r-') (6) 

and the leading terms are completely expressible in terms of ( E  (--00, 0, Z) , although not 
as simply as in the null case. If {B  (-CO, o, 5 )  = 0, the leading terms vanish. 

Now we can tum to the evaluation of the AM. We assume that the equations (1) form a 
part of a closed theory with a locally conserved symmetric energy-momentum tensor Tgb. 

Outside the matter Tab reduces to the usual electrodynamical tensor, Tab = (27r)-' @A,B,  AB 
in spinor language, which yields the angular momentum density 

1 - D' 1 
XaTbc - XbToe = -- EA'B' @C,D,X,AVBJC - - € A B  qCDX&@BOC . 

227 2n 

If <B (-00.0. 5 )  # 0 then this expression is not absolutely integrable on any space-like 
hyperplane and the total AM cannot be straightforwardly defined (this fact was clearly stated 
for the Coulomb field in [21). The remarkable thing is, however, that the amount of AM 
radiated into any solid angle during any time lapse, as well as that contained in any light- 
cone, is finite. To see, this let us fix the time axis and choose the scaling of spinors so that 
t . I = 1; s is then the retarded time. Moreover, for any A M  tensor Mab we introduce a 
corresponding A M  spinor ~ L A E  by the standard decomposition M o b  = PAB EA'E,  + ~ A , E J  € A B  . 
Using (2)  and (5) one shows that the spinor of the AM radiated into the null infinity is 

where dS2 is the angle measure and the inegration extends over the proper solid angle and 
retarded time span. The fall off rate of the integrand guarantees its absolute integrability 
over any retarded time interval. The integrability of the AM over any light-cone follows 
from the null asymptotics. 

With the above results in mind, let us concentrate on the situation depicted in figure 1. 
C(si) are the future light-cones originating from points on the time-axis and E is a 
hyperplane orthogonal to the axis and cutting it between SI and SZ. Z (SI) is the compact 
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~~ Figure 1. The whole Minkowski space is represented by the rotation of the figure around the 
time-axis 1. 

portion of I: cut. off by the cone C (SI); conversely, C' (s,) is the unbounded portion of 
C (sl) cut off by E. The local conservation law and its inegrability imply 

where is the spinor of the AM radiated into the null infinity between C (SI) and Cp) and otherspinors represent the AM contained in the surface indicated in the supekript. 
pi;' is an instant of what in &e gravitation theory is called a Bondi quantity. The first 
equality in (6) and the formula for the radiated AM show that the finite limits 1.":,"', /.":,-" 
&d pT$-m'+m) exist. Moreover, it follows from the large Is1 behaviour of CB that all these 
quantities are independent of the time-axis versor choice. For the total radiated AM this is 
also seen by the explicit formula, in which the special scaling of spinors (which breaks the 
invariance) need not to 6e assumed 

(8) 

Here dzl is the invariant homogeneous measure over the null directions 1' with the scaling 
law dzl (Lo, a) = (Ai) '  d21 (o,Z); its explicit form given in~[5] is dzl = LOA*CID~'AOA doA; 
see also [7]. For the whole integral to be invariant the integrand of d21 should scale with 
(Ai)-', which indeed is the case. 

The time-axis independence admits the clear-cut interpretation of pzFw) as the AM 
spinor of the outgoing matter. with its Coulomb field, after all radiation has died out. 
The total AM going out in the future causal (null and time-like) directions is &$m) = 
P:;" + /&. It would be natural to identify this quantity as the total AM of the system. 
For this identification to be admissible, however, a certain physical consistency condition 
should be satisfied. To see this we take into account the second equality in (7). One of 
the results of the reported work, which we shall not prove here, is that there exists Lorentz 

1 
/.L:$ = -- 1 C ( A ~ B )  (S, o,Z)ds dZ1. 

272 

\ 
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invariant (time-axis versor independent) limit of the second term on the RHS of (7) given 
by 

~ + A ( B ,  (-w, 0 , ; )  d’i. (9) C’(-m) = - 
P A 6  4n ‘ J  

Consequently, a finite limit of the first term on the RHS of (7) also exists. (How 
is that possible if the asymptotic expansion (6) holds? The.answer is that the leading term 
of the integrand changes sign with the 3-space E reflection-a property reminiscent of 
analogous conditions formulated in the gravitation theory by Regge and Teitelboim [SI.) 
p:L-”’ is what in the absolutely integrable case would be the total AM spinor, we see that 
it differs, however, from the total outgoing AM spinor by pAB . This fact alone would 
not constitute a fatal difficulty as pz-” is a result of some not completely unambiguous 
regularization. However, one can repeat our whole construction with the time direction 
reversed, that is with the cones directed into the past. It turns out then that the spinor of the 
difference of the total AM going out in the future causal duections and the total AM incoming 
from the past causal directions is given by twice the expression (9). If pZL-”) # 0 then 
the AM leaks out into the space-like infinity; an unambiguous identification of the total AM 
is not possible in that case. We demand therefore that (9) vanishes. Now the integrand 
of (9) containes the information on the asymptotic currents for time tending to plus and 
minus infinity; if both electric and magnetic charges are present the integral does not in 
general vanish. This is our argument against the existence of the latter. A general sufficient 
condition for vanishing of (9) is that, loosely speaking, the infrared and charged sectors 
are only of electric (but not magnetic) type. In precise mathematical terms: from the 
homogeneity property of 5~ ( - d o ,  6) one has UA, (-ea, a, 5 )  = O A ~ V  (0,  6) (which also 
defines u(a, 5) .  Our sufficient condition is 

C’(-m) 

. 

c (0,6) = U (0 ,5)  , 

General asymptotic currents camed by freely moving electrically charged massive particles 
or fields satisfy the condition. 

If our criterion is satisfied, we obtain a well-founded identification of the total AM spinor 

where & = fi:ym’ is the AM spinor of the outgoing matter and p’$, given by (8). is 
the radiated AM spinor; similar decomposition holds with respect to the past. We note that 
in the presence of charges the radiated AM cannot be due solely to any free radiation field; 
we shall not elaborate this point here but note only that in that case O A < ~  # 0, contrary to 
what the free field case would yield. (At this point one should comment on the apparent 
contradiction of our result with those of Lozada and Torres [Z]. Those authors rightly 
observe that the AM density is in general non-absolutely-integrable and various choices of 
improper limit give different results: the authors produce explicitely two special limits on 
a particular hyperplane for a special case of a point-charge field. They claim that there 
are no physical reasons to choose a particular way to reach the spatial infinity. The point 
is, however, that our approach does furnish strong support for our definition, which is the 
same as taking the limit lims-,-m pyi’. As discussed above this definition is timeaxis 
independent and covers all situations of physical interest in field theory.) 
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Finally, we mention for completeness that the difficulties met for AM are absent in the 
energy-momentum case. The expression analogous to (10) is then 

P,"' = P,"' + P."d 

with 

I am grateful to professor A Staruszkiewicz for inspiring my interest in infrared fields and for 
discussions. This work was supported in part by the Polish Scientific Research Committee 
grant No 0787P3/92/02. 
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